

Insights into antiscalant effectiveness to inhibit scaling in reverse osmosis

Kontakt: https://kontrisol.de/, shambhavi.kaushik@tuhh.de, barbara.wendler@tuhh.de, mathias.ernst@tuhh.de

INTRODUCTION

- Scaling is a major form of inorganic fouling in NF/RO, caused when concentration of sparingly soluble salts exceeds their solubility limit & precipitate
- Common RO scales : CaCO₃, CaSO₄, BaSO₄, SiO₂
- Consequences of scaling: Reduced permeability, increased energy consumption, shortened membrane lifetime
- Addition of antiscalants (AS) typical during NF/RO operation chemicals made specifically to inhibit scaling

OBJECTIVE

Test effectiveness of commonly used antiscalants in drinking water treatment in Germany & develop a reliable method for antiscalant testing

MATERIALS & METHODS

 CaSO₄ Scalant
 68 mM / 25 mM Na₂SO₄ + CaCl₂

 Commercial Antiscalants (active ingredient)
 PAA (P-free)
 PAA + DTPMP
 DTPMP
 ATMP
 PBTC

Lab-scale RO Pilot Plant

- Cross-flow operation with flat-sheet
 RO membrane (without spacers)
- Feed 6L; 25 mM sulfate +
 Antiscalant
- Recirculation mode; u = 0.1 m/s;
 TMP = 25 bar (constant)
- Measure rate of flux decline
- > Fast flux decline: low inhibition
- Slow flux decline: high inhibition

Stirred-Beaker Test

- Beaker with 500 ml solution (68 mM sulfate + Antiscalant)
- Continuous stirring@ 100 / 200 rpm
- Measure rate of turbidity increase & define Induction time (t_{ind}) at 1 NTU
- ➤ Low t_{ind}: low inhibition
- ➤ High t_{ind}: high inhibition

LIMITATIONS OF ANTISCALANT USE

- Feed dosing limit 2.5 mg/L Dry Matter (TrinwV, Liste §20, former §11)
- Persisting concentrations in retentate stream (need for disposal, regulations)
- Minimum dosages desired by water utilities to reduce material costs
- Difficulty in determining the appropriate AS and its dosage
- Lack of clarity about effectiveness of AS against specific scalants

CONCLUSION

- Easy-to-implement stirred-beaker test proved to be a good predetermination step for scale inhibition
- Varying effectiveness of antiscalants based on dosage: PBTC unsuitable for CaSO₄ inhibition, while other phosphonates have good threshold inhibition at higher dosages (1 mg/L)
- PAA shows good scale inhibition, but associated with small monomers potentially permeable through membrane and highly bioavailable

RESULTS & DISCUSSION

20

(a) Low antiscalant dosage

DTPMP

 PAA maintains most stable flux at 0.5 mg TS/L by threshold inhibiton & dispersion mechanism

Stirred beaker test

PAA+ DTPMP PBTC ATMP

PBTC unsuitable for sulfate inhibition

SEM of scaled RO membrane after filtration

(b) High antiscalant dosage

20 mM Na2SO4 & CaCl2 + 1 mg TS/L AS

Recirculation mode; TMP = 25 bar; T ≈ 11 °C

68 mM Na2SO4 & CaCl2 + 0.5 mg TS/L AS

Magnetic stirring; T ≈ 11 °C, Induction time at
1 NTU, n=2

SEM of scaled RO membrane after filtration

- All antiscalants show relatively stable flux
- PBTC unsuitable as SEM shows several crystals on its surface, thus verifying stirred-beaker test results

Project Partners